设为首页| 加入收藏
网站首页 本刊简介 编委会 投稿指南 过刊浏览 联系我们 下载专区
最新消息:
位置:首页 >> 期刊文章
血浆置换治疗肝衰竭后发生不良反应的影响因素分析及列线图预测模型的建立
作者:仲秀利1  崔文静2  许燕3 
单位:1. 淮安市第二人民医院 血液净化中心 江苏 淮安 223001 2. 淮安市第四人民医院 肝病科 江苏 淮安 223001 3. 淮安市第四人民医院 重症医学科 江苏 淮安 223001 
关键词:肝衰竭 血浆置换 不良反应 列线图 
分类号:
出版年,卷(期):页码:2024,16(1):52-56
摘要:
摘要:目的 分析血浆置换治疗肝衰竭后发生不良反应的影响因素,构建预测血浆置 换治疗肝衰竭后发生不良反应的列线图预测模型。方法 选取2019年3月至2022年3月淮 安市第二人民医院收治的132例肝衰竭患者为研究对象,依据血浆置换治疗后是否发 生不良反应分为发生不良反应组(50例)和未发生不良反应组(82例),比较两组患 者性别、年龄、临床分期、血白细胞、总胆红素(total bilirubin,TBil)、直接胆红 素(direct bilirubin,DBil)、白蛋白(albumin,ALB)、丙氨酸氨基转移酶(alanine aminotransferase,ALT)、天门冬氨酸氨基转移酶(aspartate aminotransferase,AST)、 凝血酶原活动度(prothrombin activity,PTA)、血肌酐、肝性脑病等的差异。采用多因 素Logistic回归分析血浆置换治疗肝衰竭后发生不良反应的影响因素。采用R软件构建预 测血浆置换治疗肝衰竭后发生不良反应的列线图模型,绘制受试者工作特征(receiver operator characteristic,ROC)曲线评估列线图预测血浆置换治疗肝衰竭后发生不良反 应的区分度,采用Hosmer-Lemeshow拟合优度检验与校准曲线评估其一致性。结果 发 生不良反应组患者晚期肝衰竭比例 [56.00%(28/50)比32.93%(27/82)]、血白细胞 [(17.51 ± 3.61)× 109 /L比(13.64 ± 2.32)× 109 /L]、TBil [(228.49 ± 40.27)μmol/L比 (100.65 ± 26.26)μmol/L]、DBil [(120.52 ± 31.82)μmol/L比(74.26 ± 21.06)μmol/L]、 AST [(178.64 ± 56.32)U/L比(79.06 ± 17.08)U/L]、ALT [(216.51 ± 53.95)U/L比 (84.62 ± 17.64)U/L]、血肌酐 [(156.85 ± 26.72)μmol/L比(127.75 ± 22.96)μmol/L]、 并发肝性脑病比例 [60.00%(30/50)比12.20%(10/82)] 均显著高于未发生不良反应 组(P均< 0.05),ALB [(29.63 ± 8.27)g/L比(50.26 ± 10.19)g/L] 和PTA [(28.63 ± 8.09)%比(41.68 ± 7.06)%] 水平显著低于未发生不良反应组(P均< 0.05)。多 因素Logistic回归分析表明,中期肝衰竭(OR = 2.706,95%CI:2.234~14.576,P < 0.001)、晚期肝衰竭(OR = 4.532,95%CI:1.762~11.628,P = 0.002)、TBil(OR = 1.028,95%CI:1.016~1.040,P < 0.001)、并发肝性脑病(OR = 5.602,95%CI: 1.332~23.562,P = 0.019)是血浆置换治疗肝衰竭后发生不良反应的危险因素,PTA 为保护因素(OR = 0.902,95%CI:0.852~0.954,P < 0.001)。血浆置换治疗肝衰 竭后发生不良反应的列线图预测模型具有较好的区分度(ROC曲线下面积为0.958, 95%CI:0.926~0.991)和一致性(Hosmer-Lemeshow拟合优度检验χ 2 = 8.555,P = 0.381)。结论 本研究构建的预测血浆置换治疗肝衰竭后发生不良反应的列线图模型 可识别血浆置换治疗肝衰竭后发生不良反应的高风险患者。
Abstract: Objective To analyze the influencing factors of adverse reactions after plasma exchange for liver failure and to construct a nomogram prediction model for predicting adverse reactions after plasma exchange for liver failure. Methods Total of 132 cases with liver failure in Huai’an Second People’s Hospital from March 2019 to March 2022 were selected and divided into adverse reaction group (50 cases) and non-adverse reaction group (82 cases) according to whether adverse reactions occurred after plasma exchange therapy. The differences of gender, age, clinical stage, blood leukocytes, total bilirubin (TBil), direct bilirubin (DBil), albumin (ALB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), prothrombin activity (PTA), blood creatinine and hepatic encephalopathy of patients in two groups were compared. Multivariate Logistic regression analysis was applied to analyze the influencing factors of adverse reactions after plasma exchange for liver failure. R software was applied to construct a nomogram model for predicting adverse reactions after plasma exchange therapy for liver failure. Receiver operator characteristic (ROC) curve was used to assess the discrimination of column plots predicting the occurrence of adverse effects after plasma exchange for liver failure, and Hosmer-Lemeshow goodness-of-fit was used to assess the agreement with calibration curves. Results The proportion of advanced liver failure [56.00%(28/50)vs. 32.93%(27/82)], blood white blood cells [(17.51 ± 3.61) × 109 /L vs. (13.64 ± 2.32) × 109 /L], TBil [(228.49 ± 40.27) μmol/L vs. (100.65 ± 26.26) μmol/L], DBil [(120.52 ± 31.82) μmol/L vs. (74.26 ± 21.06) μmol/L], AST [(178.64 ± 56.32) U/L vs. (79.06 ± 17.08)U/L], ALT [(216.51 ± 53.95) U/L vs. (84.62 ± 17.64) U/L], serum creatinine [(156.85 ± 26.72) μmol/L vs. (127.75 ± 22.96) μmol/L] and the proportion of hepatic encephalopathy [60.00% (30/50) vs. 12.20% (10/82)] of patients in adverse reaction group were significantly higher than those of non-adverse reaction group, and the levels of ALB [(29.63 ± 8.27) g/L vs. (50.26 ± 10.19) g/L] and PTA [(28.63 ± 8.09)% vs. (41.68 ± 7.06)%] were significantly lower (all P < 0.05). Logistic regression analysis showed that middle stage liver failure (OR = 2.706, 95%CI: 2.234~14.576, P < 0.001), advanced liver failure (OR = 4.532, 95%CI: 1.762~11.628, P = 0.002), TBil (OR = 1.028, 95%CI: 1.016~1.040, P < 0.001) and hepatic encephalopathy (OR = 5.602, 95%CI: 1.332~23.562, P = 0.019) were risk factors for adverse reactions after plasma exchange, while PTA was a protective factor (OR = 0.902, 95%CI: 0.852~0.954, P < 0.001). The constructed nomogram prediction model for adverse reactions after plasma exchange therapy of liver failure had good discrimination (area under the ROC curve was 0.958, 95%CI: 0.926~0.991) and consistency (Hosmer-Lemeshow goodness of fit test χ 2 = 8.555, P = 0.381). Conclusions The nomogram model constructed for predicting adverse reactions after plasma exchange therapy for liver failure can identify patients with high-risk of adverse reactions after plasma exchange therapy
基金项目:
作者简介:
参考文献:
服务与反馈:
文章下载】【加入收藏
 

地址:北京市朝阳区京顺东街8号
邮政编码:100015  电话:010-84322058  传真:010-84322059 Email:editordt@163.com